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Abstract—The synthesis of novel, 5-amino 1,3-disubstituted tetrahydropyrimidinones, and 5-aminobarbiturates are presented.
� 2004 Elsevier Ltd. All rights reserved.
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Figure 1. Selected biologically active tetrahydropyrimidinones.
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Figure 2. 5-Amino 1,3-disubstituted tetrahydropyrimidinones.
Tetrahydropyrimidinones are one of the more common
core heterocyclic structures in biologically active mole-
cules.1 Many of these derivatives, including the selected
structures shown in Figure 1, possess a wide range of
biological activities.1

Syntheses of variously substituted derivatives have been
reported.1,2 Two general synthetic routes include cycli-
zations of 1,3-diamines with phosgene-type reagents,1b,c

and 1,3-dihalides with ureas.3

In one of our recent drug discovery programs, we were
interested in preparing variously substituted 5-amino
tetrahydropyrimidinones 4 (Fig. 2). Despite the wide
presence of tetrahydropyrimidinones, only one 5-amino
tetrahydropyrimidinone structure, a generically claimed
selective muscarinic agonist by Merck (5, Fig. 2), was
reported without synthesis details.4

Presumably the synthesis of 4 could be achieved from a
recently reported 5-acetoxy tetrahydropyrimidinone
intermediate through lengthy reaction sequence.5 How-
ever, from a parallel synthesis requirement, we would
preferably like to prepare 4 from a simple starting prim-
ary amine 6 bearing easily installable R1 and R2

(Fig. 3). After experiencing difficulties in either cycliza-
tion of ureas with 1,3-dihalide intermediates or synthe-
sizing possible tri-amine intermediates for cyclization
with phosgene or phosgene equivalents, we envisioned
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that a barbiturate type intermediate 8 could be
suitable for nitration at its 5-position to provide the
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Scheme 1. Reagents and conditions: (a) N2O4; (b) Me2SÆBH3, THF.
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Figure 3. Retrosynthesis plan.

8332 G. Luo / Tetrahedron Letters 45 (2004) 8331–8334
nitrobarbiturate intermediate 7, which in turn could be
reduced to afford the desired structure 6 (Fig. 3). In
essence, the incorporation of the two carbonyl groups
not only render the introduction of the nitrogen group
possible but also facilitate the ring formation reaction.
Table 1. Conversion of barbiturates 8 to 5-aminopyrimidinones 6 via 5-nitr
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aHPLC yield (±2% with different sampling of the solid).
b Isolated yield of pure compound for two steps.
This route indeed proved to be successful. N,N 0-Disub-
stituted barbiturates 8 were synthesized from symmetric
or asymmetric ureas, which are easily prepared from
commercially available amines and isocyanates, and
malonyl dichloride in good yields as crystalline solids,
following a literature described procedure.6 Mono-nitra-
tion of the 5-position by nitric acid was difficult to
achieve despite a recent publication.7 However, by using
a solid–gas reaction condition with NO2 as a nitration
source, mono-nitration was exclusively achieved
(Scheme 1).8 The procedure affords the desired solid
mono-nitrated product 7 without bis-nitration and
avoids any purification procedures (Table 1).8 While
attempted reduction of 5-nitrobarbiturate 7 by LiAlH4

resulted in loss of the nitro group, complete reduction
obarbiturates 7
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Scheme 2. Reagents and conditions: (a) Raney nickel/H2, CH3COOH,

MeOH; (b) isocyanate, dichloroethane (47% for two steps).
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of 7 to 6 was achieved by treatment with Me2SÆBH3.
9

The purified overall yield for two-step sequence is gener-
ally over 50% (Table 1).9 To the best of our knowledge,
this is the first report that a none-aromatic nitro group
was directly reduced to an amino group solely by the
borane reagent. Even though it is not rigorously estab-
lished, we believe that the neighboring carbonyl groups
played a critical role in this nitro group reduction by
borane.

Hydrogenation of 7 should afford 5-aminobarbiturate,
another medicinally interesting structure, which could
not be easily prepared from literature procedures.10

For example, even though Pd/C catalyzed hydrogena-
tion gave a messy mixture, Raney nickel catalyzed
hydrogenation of 7c afforded a clean conversion to 8,
which was very unstable and reacted with an isocyanate
to afford a urea derivative 9 as shown in Scheme 2.11

In summary, a very brief and facile synthesis had been
achieved for 5-amino 1,3-disubstituted tetrahydropyr-
imidinones through an interesting solid–gas reaction
and a direct borane reduction of one nitro and two
amide groups in one pot. However, it should be noted
that for asymmetrical ureas this quick synthesis route
provides only a racemic mixture. Possible chiral com-
pounds should be accessible through a chiral acetoxy
compound.5
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